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Abstract
The su(3) mean field approximation describes collective nuclear rotation in a
density matrix formalism. The densities ρ = q − i l/2 are 3 × 3 Hermitian
matrices in the su(3) dual space, where q is the expectation of the quadrupole
moment and l is the expectation of the angular momentum. The mean field
approximation restricts these densities to a level surface of the su(3) Casimirs.
Each level surface is a coadjoint orbit of the canonical transformation group
SU(3). For each density ρ, the su(3) mean field Hamiltonian h[ρ] is an
element of the su(3) Lie algebra. A model su(3) energy functional and the
symplectic structure on the coadjoint orbit determine uniquely the su(3) mean
field Hamiltonian. The densities in time-dependent su(3) mean field theory
obey the dynamical equation i ρ̇ = [h[ρ], ρ] on a coadjoint orbit. The cranked
mean field Hamiltonian is h = h + i, where is the angular velocity of the
rotating principal axis frame. A rotating equilibrium density ρ̃ in the body-fixed
frame is a self-consistent solution to the equation [h[ρ̃], ρ̃] = 0.

PACS numbers: 02.20.Qs, 02.20.-a, 03.65.Fd

1. Introduction

Any dynamical symmetry algebra determines two different group theoretical models. One
of them is based on the unitary irreducible representations of the algebra where the physical
states are vectors in a Hilbert space. The other is mean field theory, where the states are density
matrices in the algebra’s dual space.

The Lie algebra u(n) of all one-body operators in an n-dimensional single-particle valence
space illustrates best the two approaches [1, 2]. It is the fundamental algebraic structure
underlying both the shell model and Hartree–Fock theory. In the shell model the quantum
states span the fully antisymmetrized unitary irreducible representation of the group U(n). In
Hartree–Fock the role of the unitary group and its Lie algebra has three essential aspects. First,
the densities are elements of the dual space of the Lie algebra. A density matrix ρ is defined
by the expectations of the u(n) generators. Second, U(n) is a transformation group on the
dual space. A density ρ is transformed by g ∈ U(n) into the density gρg−1. Third, the mean
field approximation restricts the model densities to one coadjoint orbit of the unitary group.
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The orbit containing the density ρ consists of ρ and all the transformed densities gρg−1 as g
ranges over the entire groupU(n). The idempotent density matrices, ρ2 = ρ, which correspond
to Slater determinants, form a single coadjoint orbit. These three essential ingredients may be
used to construct a mean field theory for the densities of any group theoretical model.

A su(3) density matrix is a Hermitian traceless 3 × 3 matrix ρ = q − 1
2 i l, where q is a

real symmetric traceless matrix and l is an antisymmetric matrix. The real part q is interpreted
as the quadrupole moment expectation and the imaginary part l is the angular momentum
expectation. The components of the angular momentum pseudovector �l are related to the
entries of the antisymmetric matrix l via lij = εijklk . The dual space su(3)∗ of the Lie algebra
consists of all such density matrices.

The Lie group SU(3) consists of the complex 3×3 unitary matrices with unit determinant.
On the dual space, the coadjoint action is the SU(3) group transformation, Ad∗

gρ ≡ gρg−1

for g ∈ SU(3) and ρ ∈ su(3)∗ [3]. Because any Hermitian matrix can be diagonalized by a
unitary matrix, each SU(3) orbit contains a real traceless diagonal matrix that is unique except
for the ordering of the eigenvalues. For a pair of non-negative real numbers (λ, µ) and a choice
of eigenvalue ordering, each orbit contains a unique diagonal matrix of the form

� = 1
3

(−λ + µ 0 0
0 −λ− 2µ 0
0 0 2λ + µ

)
. (1.1)

The pair (λ, µ) labels the coadjoint orbits and each such diagonal matrix � is an orbit
representative. This particular indexing of the orbits is chosen because, whenever λ and µ are
non-negative integers, equation (1.1) is the density corresponding to a highest-weight vector
of an irreducible SU(3) representation [4, 5]. On the other hand, starting from such integral
coadjoint orbits, the unitary irreducible representations of su(3) can be constructed via
geometric quantization [3, 6–9].

The su(3) mean field approximation restricts the model densities to one coadjoint orbit,
denoted by O�, containing the diagonal density �,

O� = {ρ = Ad∗
g� = g�g−1 ∈ su(3)∗|g ∈ SU(3)}. (1.2)

The dual space su(3)∗ is a disjoint union of the coadjoint orbits O� as � ranges over the
orbit representatives (1.1). The restriction to a single coadjoint orbit in the density space is the
mathematical expression of SU(3) dynamical symmetry in a mean field theory. It is analogous
to the restriction to a single irreducible representation for a dynamical symmetry in the shell
model.

An energy functional E[ρ] is a real-valued functional of the density. According to the
generalized Hohenberg–Kohn theorem of density functional theory, there exists a su(3)∗ energy
functional whose minimum is the exact su(3) ground state density [10,11]. It was shown in an
earlier companion paper [12] that the critical points of an su(3) energy functional E restricted
to the surface O� determine rotational bands. The aim of this paper is to derive the SU(3)
mean field Hamiltonian h[ρ] from the energy functional. For each point ρ, the mean field
Hamiltonian h[ρ] is an su(3) Lie algebra element.

The symplectic geometry of a coadjoint orbit is crucial to the determination of the
mean field Hamiltonian [13]. An important mathematical result, developed and used by
Souriau [6], Kostant [7] and Kirillov [8], is that the coadjoint orbits of a Lie group are symplectic
manifolds. The relevance of symplectic geometry to many-body quantum physics is evident
in Hartree–Fock [1, 2]. Given two Hermitian one-body operators Â and B̂ and a normalized
Slater determinant �, define the form ω at � as the expectation of the one-body commutator
[Â, B̂] in the state �,

ω�(Â, B̂) = −i 〈�| [Â, B̂] |�〉. (1.3)
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This form is real valued, bilinear and antisymmetric in Â and B̂. If Ĥ is the exact Hamiltonian,
the Hartree–Fock Hamiltonian ĥ at � is a one-body Hermitian operator satisfying

ω�(Â, ĥ) = −i 〈�| [Â, Ĥ ] |�〉 (1.4)

for all one-body Hermitian operators Â. The one-body operator ĥ is not determined uniquely
because any pure particle–particle or hole–hole one-body operator may be added to it without
altering the equality in equation (1.4). The nonuniqueness of the Hartree–Fock Hamiltonian
has a geometrical interpretation.

Choose some orthonormal basis for then-dimensional single-particle valence space and let
A denote the Hermitian matrix in u(n) associated with the one-body operator Â. With respect
to the basis, let ρ denote the idempotent density matrix corresponding to the determinant �.
The form (1.3) can be expressed alternatively as

ωρ(A,B) = −i tr (ρ [A,B]). (1.5)

Any traceless Hermitian matrix A defines a curve

ρ(ε) = exp(−iεA) ρ exp(iεA) − ∞ < ε <∞ (1.6)

through the point ρ in the orbit of idempotent densities. Let Ā denote the tangent to this
curve. A pure particle–particle plus hole–hole one-body operator Â determines a zero-tangent
vector because the curve ρ(ε) = ρ becomes a fixed point. Such null vectors correspond to
the Hermitian matrices A that commute with ρ. The algebra elements associated with the null
tangent vectors form a subalgebra of u(n), called the isotropy subalgebra at ρ:

u(n)ρ = {A ∈ u(n) | [A, ρ] = 0}. (1.7)

A vector is null, Ā = 0, if and only if the matrix A ∈ u(n)ρ . When A and B differ by an
element of u(n)ρ , they determine the same tangent vector at ρ. The form ωρ is well defined
on the tangent space at ρ because ωρ(A1, B1) = ωρ(A2, B2) whenever A1 −A2 and B1 − B2

are elements of the isotropy subalgebra.
The form ωρ may be regarded geometrically as a rank two covariant tensor,

ωρ(Ā, B̄) = −i tr(ρ [A,B]) (1.8)

for each pair of tangent vectors Ā and B̄ at the idempotent density ρ. The tensor ωρ is
nondegenerate, i.e.

ωρ(Ā, B̄) = 0 for all Ā ⇔ B̄ = 0. (1.9)

Hence, at the point ρ, the tangent vector h̄ corresponding to the Hartree–Fock Hamiltonian
ĥ is determined uniquely by the nondegenerate tensor ωρ . Due to the Jacobi identity the
form ω is closed. By definition, a symplectic manifold is a smooth manifold equipped with a
closed, nondegenerate, antisymmetric, second-rank covariant tensor [13]. Thus, the manifold
of idempotent densities is a symplectic manifold.

The right-hand side of equation (1.4) has a geometrical interpretation too. The energy
functional E at the idempotent density ρ is the expectation of the Hamiltonian Ĥ in the
corresponding determinantal state �. The derivative of the energy functional in the direction
Ā is the rate of change of the energy along the curve ρ(ε),

dE(Ā)[ρ] = d

dε
E[ρ(ε)]|ε=0

= d

dε
〈e−iεÂ�|Ĥ |e−iεÂ�〉|ε=0. (1.10)

But this derivative is the negative of the right-hand side of equation (1.4). Hence the Hartree–
Fock Hamiltonian is determined by the equation
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ωρ(h̄[ρ], Ā) = dE(Ā)[ρ] (1.11)

for all directions Ā tangent at ρ to the coadjoint orbit of idempotent densities.
The construction of the Hartree–Fock Hamiltonian generalizes to any Lie algebra model.

Since the coadjoint orbits of any Lie algebra are symplectic manifolds, the form ω is
nondegenerate on each orbit. Given an energy functional of the density, the fundamental
equation (1.11) determines a unique vector field h̄[ρ], which is the mean field Hamiltonian. In
particular, the symplectic geometry of the su(3) coadjoint orbits determines the su(3) mean
field Hamiltonian from the su(3) energy functional using equation (1.11).

It is interesting to note that classical mechanics, in its contemporary formulation, is
expressed in terms of symplectic geometry [14]. Phase spaces are symplectic manifolds. It is
the symplectic form that allows the Poisson bracket of any two functions on a phase space to
be computed. It is the symplectic form that gives the ‘twist’ to the gradient of the Hamiltonian
and turns it into a Hamiltonian vector field—the tangent at each point to the solution curve of
a dynamical problem. Canonical transformations are those that preserve the symplectic form.

Darboux’s theorem guarantees that finite-dimensional symplectic manifolds are even
dimensional and are locally isomorphic to phase spaces R

2n, i.e. in the vicinity of each point
on the 2n-dimensional manifold a complete set of n generalized position and momentum
coordinates can be introduced, in which the symplectic form and Poisson bracket take their
canonical forms [14]. But these coordinates are complicated expressions, in general, that do
not have a clear physical meaning. Mean field theory is expressed in a more direct physical
and geometrical way in terms of algebra generators without using canonical coordinates. In
some respects the formulation becomes more abstract, but the gain in physical insight offsets
the loss of a more elementary theoretical framework.

A symplectic manifold and an energy function defined on it determine a Hamiltonian
dynamical system. Thus, different cases of symplectic manifolds lead to many familiar
examples [14]: classical mechanics is built on a cotangent bundle, quantum mechanics can be
viewed as a Hamiltonian dynamical system on projective Hilbert space and Hartree–Fock
mean field theory as a Hamiltonian dynamical system on the space of normalized Slater
determinants [1]. Coadjoint orbits arise in symplectic reduction of a classical mechanical
system with symmetry [14].

The mathematical set-up for the Hamiltonian formulation of classical mechanics and
algebraic mean field theories is the same, yet they are two very distinct physical pictures. The
key is the different microscopic interpretations attached to the points of a coadjoint orbit in the
two cases. Formally this is achieved by the moment (or momentum) map [6]. For a classical
mechanical model, the moment map is between the phase space R

6A of an A particle system
and the coadjoint orbits, while for a quantum mechanical mean field model the moment map
originates in projective Fock space.

The su(3) coadjoint orbits and their symplectic geometry are reviewed in section 2. A
combination of symplectic geometry and the exterior calculus of differential forms enables the
explicit computation of the mean field Hamiltonian for any rotational scalar energy. Dynamics
on each coadjoint orbit is given by the equation i ρ̇ = [h[ρ], ρ]. This equation is formally
identical to the time-dependent Hartree–Fock equation of motion. This time evolution is a
Hamiltonian dynamical system.

Section 3 presents the su(3) mean field approximation in the rotating body-fixed frame.
The mean field Hamiltonian is transformed into the Routhian h = h+ i in the principal axis
frame. The real antisymmetric matrix is the angular velocity of the principal axis frame. The
principal axis densities form a submanifold of a coadjoint orbit consisting of the densities ρ̃
with a diagonal quadrupole moment. Rotating equilibrium solutions are zeros of the Routhian
vector field, [h[ρ̃], ρ̃] = 0. This equation must be solved self-consistently for the equilibrium
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principal axis density ρ̃. Analytical solutions, which coincide with the rotational bands found
in prior work [12], are obtained in section 4 for many interesting special cases.

2. Symplectic geometry

2.1. Preliminaries

The Lie algebra su(3) is the space of Hermitian traceless 3 × 3 matrices

su(3) = {Z ∈ M3(C)|Z† = Z, tr Z = 0}. (2.1)

The Lie algebra so(3) of the rotation group consists of the antisymmetric matrices. Suppose σ
is a unitary, but not necessarily irreducible, representation of su(3) on some Hilbert space H:
[σ(Z), σ (W)] = σ([Z,W ]) for matricesZ,W ∈ su(3). The representation may correspond to
any physical realization of su(3) dynamical symmetry, for example the Elliott oscillator-based
theory [4], the interacting boson su(3) limit [5], pseudo-su(3) symmetry in medium-mass
isotopes [15, 16] or cluster model su(3) symmetry [17, 18]. The quantum vector angular
momentum operator L̂ on H is the representation of the antisymmetric matrices, and the
quantum su(3) quadrupole operator Q̂(2) on H is the representation of the traceless symmetric
matrices,

L̂ij = εijkL̂k = σ [−i(Eij − Eji)]
Q̂(2)

ij = σ [(Eij + Eji)/2 − (1/3)δij Id]
(2.2)

where Id denotes the 3 × 3 identity matrix and Eij is the 3 × 3 matrix whose entries vanish
except for the intersection of row i with column j where the matrix entry is one.

For each normalized state vector ) ∈ H the expectations of the operators

qjk = 〈)|Q̂(2)jk |)〉
ljk = 〈)|L̂jk|)〉 (2.3)

define a real symmetric traceless matrix q and a real antisymmetric matrix l. The ‘density’
matrix corresponding to) is defined as the Hermitian traceless matrix ρ = q − 1

2 i l. In terms
of it, the expectation of a general element of the su(3) operator algebra is

〈ρ,Z〉 ≡ tr(ρZ) = 〈)|σ(Z)|)〉 (2.4)

for allZ ∈ su(3). In fact each traceless Hermitian density matrix ρ defines a real-valued linear
functional on the matrix Lie algebra su(3), namely, 〈ρ,Z〉 ≡ tr(ρZ) for allZ ∈ su(3). The set
of all such linear functionals ρ is called the dual space of su(3) and is denoted by su(3)∗. The
dimension of the dual space equals the dimension of the algebra, dim su(3)∗ = dim su(3) = 8.

The mapping from the Hilbert space to the dual space is called the moment map
M : H −→ su(3)∗, where the density corresponding to the vector ) is ρ = M()) [6, 14].
When )HW is a highest-weight vector for an irreducible representation of su(3), the
corresponding density M()HW) is the diagonal matrix � of equation (1.1), where λ,µ are
non-negative integers that label the su(3) irrep.

The group SU(3) is related by exponentiation to the algebra su(3), exp: su(3)−→ SU(3).
When Z ∈ su(3), exp(iεZ) ∈ SU(3) is a curve through the group identity. Because SU(3)
is simply connected, the algebra representation lifts to a unique group representation, also
denoted by σ , that satisfies σ [exp(iZ)] = exp[iσ(Z)].

The group SU(3) transforms a normalized vector) from the representation space H into
σ(g)). The corresponding density ρ = M()) transforms intoM(σ(g))) = gρg−1 ≡ Ad∗

gρ

under the group action [12]. Although it may be difficult to compute the transformed state
σ(g)) explicitly, the transformed density is just a product of three 3 × 3 matrices that is
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independent of the representation σ . The simplicity of the coadjoint action Ad∗
gρ is a principal

reason for the tractability of su(3) mean field theory.

2.2. Coadjoint orbits

The model densities in the su(3) mean field approximation are restricted to a coadjoint orbit
O� in the dual space. The orbit representative � is given by equation (1.1).

The coadjoint orbit is a homogeneous space; i.e., O� is diffeomorphic to the coset space
SU(3)/SU(3)�, where SU(3)� denotes the isotropy subgroup at �. The isotropy subgroup
consists of the coadjoint transformations that fix �,

SU(3)� = {h ∈ SU(3)|h� = �h}. (2.5)

The diffeomorphism O� � SU(3)/SU(3)� is easy to see. Consider the map ϕ : SU(3) −→
O� defined by g �−→ ϕ(g) = Ad∗

g�. The map is onto, but it is not one to one. Two different

group elements g1 �= g2 have the same image under ϕ, ϕ(g1) = ϕ(g2), if and only if g−1
2 g1 is

an element of the isotropy subgroup at �, g−1
2 g1 ∈ SU(3)�, which, by definition, means that

the two elements belong to the same coset g1SU(3)� = g2SU(3)�. Thus the dimension of O�
is generally less than the dimension of the group, dim O� = dim SU(3)− dim SU(3)�.

For the typical diagonal orbit representative, equation (1.1), the isotropy subgroup is the
torus U(1) × U(1), and the coadjoint orbit O� ∼= SU(3)/[U(1) × U(1)]. The dimension of
the generic orbit space is dim SU(3) − dim SU(3)� = 6. In the special case of two equal
eigenvalues, λ = 0 or µ = 0, the isotropy subgroup is U(2) and the orbit’s dimension equals
four.

The orbit representatives � of equation (1.1) are a convenient, but essentially arbitrary
choice. When ρ is any point on the coadjoint orbit O�, the coadjoint orbit through it is the
same, Oρ = O�. The isotropy subgroup at ρ = Ad∗

g� is different from the isotropy subgroup
at �, but the two isotropy subgroups are isomorphic. The group isomorphism is the adjoint
group transformation, ADg : SU(3)� → SU(3)ρ , ADgh = ghg−1.

There are various adjoint group transformations acting on different, but related, domains;
for example, ADg acts on the Lie group, Ad∗

g is a linear transformation acting on the dual space
to the Lie algebra, Adg is a linear transformation of the Lie algebra [19]. In the special case of
a semisimple matrix Lie group like SU(3), every adjoint transformation simplifies to matrix
conjugation. For non-semisimple algebras the coadjoint action is not matrix conjugation.
Although it may seem pedantic for su(3), the distinctions among the various adjoint maps are
essential for future applications.

Each elementZ of the su(3)Lie algebra determines a tangent vector field Z̄ to the coadjoint
orbits. Consider the curve ζ(ε) = exp(iεZ) in the group SU(3). Given any point ρ in the dual
space, the curve Ad∗

ζ(ε)ρ = exp(−iεZ)ρ exp(iεZ) lies in the coadjoint orbit through ρ. The
tangent to this curve is denoted by Z̄.

The Lie algebra of the isotropy subgroup SU(3)ρ is

su(3)ρ = {Z ∈ su(3)|[Z, ρ] = 0}. (2.6)

If Z is an element of the Lie algebra su(3)ρ of the isotropy subgroup at ρ, then Z̄ is a zero-
tangent vector at ρ because the curve exp(−iεZ)ρ exp(iεZ) is a fixed point ρ. For example,
at each point ρ, Z = ρ is a null tangent vector, ρ̄ = 0. When the difference between two
Lie algebra elements is an element of the isotropy subalgebra at ρ, the corresponding tangent
vectors are equal:

Z̄ = W̄ if and only if Z −W ∈ su(3)ρ. (2.7)

Therefore, by definition, the tangent space to the coadjoint orbit at ρ can be identified with the
vector space su(3) modulo the isotropy subalgebra at ρ, su(3)/su(3)ρ .
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2.3. Symplectic form

For two tangent vectors, Z̄ and W̄ , to the coadjoint orbit at ρ, define the symplectic form
by [3, 8]

ωρ(Z̄, W̄ ) = −i〈ρ, [Z,W ]〉. (2.8)

This antisymmetric bilinear form is well defined on the tangent space to the coadjoint orbit
at ρ since 〈ρ, [Z,W ]〉 = 〈ρ, [Z′,W ′]〉 when Z − Z′ ∈ su(3)ρ and W −W ′ ∈ su(3)ρ . The
form ω is a second-rank covariant tensor on each coadjoint orbit. It is also nondegenerate;
i.e., ωρ(Z̄, W̄ ) = 0 for allW in the su(3) Lie algebra if and only if Z̄ is a null tangent vector
at ρ or Z ∈ su(3)ρ . Since an antisymmetric form can only be nondegenerate on an even-
dimensional vector space, each coadjoint orbit is even dimensional. In fact each coadjoint
orbit is a symplectic manifold because the form ω is closed [8]. Canonical coordinates can
be introduced for each coadjoint orbit, but it is not always convenient to work with them as
discussed in the introduction.

A one-form at ρ is, by definition, a real-valued linear functional of the tangent space
su(3)/su(3)ρ . For any one-form α, the symplectic form determines a tangent vector, denoted
by α., from the condition

ωρ(α
., W̄ ) = α(W̄ ) for all tangents W̄ at ρ. (2.9)

The ‘sharp’ notation indicates that the components of the tangent vector α. are given by raising
the indices of the one-form α via the tensor ω. Equation (2.9) determines uniquely the vector
α. because the symplectic form is nondegenerate.

Suppose f is any smooth function on the coadjoint orbit Oρ . The differential df is a
one-form at ρ. Given any tangent vector W̄ at ρ, the derivative of f in the direction of W̄ is a
linear function of W̄ ,

df (W̄ ) = d

dε
f (exp(−iεW)ρ exp(iεW))|ε=0. (2.10)

The vector df . at ρ is determined uniquely by equation (2.9). Hence, each function f defines
a vector field df . on each coadjoint orbit satisfying

ωρ(df
., W̄ ) = df (W̄ ) (2.11)

for all directions W̄ tangent to the coadjoint orbit at ρ. The vector field df . is called the
Hamiltonian vector field associated with the smooth function f . Since each tangent vector
can be expressed as a Lie algebra element, there exists a Lie algebra element Zf such that
df . = Z̄f . Two Lie algebra elements Zf and Z′

f that define the same Hamiltonian vector
field df . differ by an element of the isotropy subalgebra su(3)ρ . For simplicity of notation,
the ‘bars’ over the algebra elements will be omitted, but understood, whenever confusion
between algebra elements and vector fields is unlikely. Note that the vector field df . is called
a ‘Hamiltonian’ vector field for any smooth function f , which is not necessarily the energy
function.

For each Lie algebra element Z there is an elementary function fZ on the dual space
given by fZ(ρ) = 〈ρ,Z〉. The value of the function fZ at ρ is the expectation of the physical
observable corresponding to Z when the system’s state has the su(3) density ρ.

Proposition. The Hamiltonian vector field associated with an elementary function fZ for Z ∈
su(3) is df .Z = Z̄.

To prove this calculate the derivative of fZ in the direction W̄ ,
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dfZ(W̄ ) = d

dε
fZ[e−iεWρeiεW ]|ε=0

= d

dε
tr (e−iεWρeiεWZ)|ε=0

= −i tr (WρZ − ρWZ)
= ωρ(Z̄, W̄ ). (2.12)

By definition of the Hamiltonian vector field,

ωρ(df
.

Z, W̄ ) = ωρ(Z̄, W̄ ). (2.13)

Since ωρ is nondegenerate, the Hamiltonian vector field df .Z = Z̄.

In particular the Hamiltonian vector fields associated with the angular momentum and
Elliott quadrupole moment are

dl.ij = −i(Eij − Eji)
dq.ij = (Eij + Eji)/2 − (1/3)δij Id.

(2.14)

When Z = Eji − (1/3)δjiId ∈ su(3), the elementary function fZ(ρ) = ρij , and, therefore,

dρ.ij = Eji − (1/3)δjiId. (2.15)

2.4. Dynamics

Let E be a smooth energy functional on a coadjoint orbit Oρ . The mean field Hamiltonian h[ρ]
at ρ is an element of the Lie algebra su(3) such that the vector field h[ρ] = dE. at ρ satisfies

ωρ(h[ρ], W̄ ) = dE(W̄ ) (2.16)

for all W ∈ su(3). The nondegeneracy of the symplectic form guarantees that there exists
a unique solution h[ρ] to this equation. Note that the mean field Hamiltonian is a smooth
function of the density with values in the Lie algebra.

The time evolution of the su(3) density is determined by a geometrical condition: a
solution curve ρ(t) must be an integral curve of the su(3) Hamiltonian vector field h[ρ].
Thus the tangent to a solution curve is everywhere equal to the Hamiltonian vector field.
Pick a time t and set ρ = ρ(t). Let γ1(ε) = ρ(t + ε) denote the solution curve
through ρ. By definition, the mean field Hamiltonian h[ρ] is the tangent at ρ to the curve
γ2(ε) = exp(−iεh[ρ])ρ exp(iεh[ρ]). The integral curve condition requires that the tangents
to the curves γ1(ε) and γ2(ε) be equal at ε = 0,

d

dε
γ1(ε)|ε=0 = d

dε
γ2(ε)|ε=0 or iρ̇ = [h[ρ], ρ]. (2.17)

The su(3)mean field dynamical equation is formally identical to the time-dependent Hartree–
Fock equation.

When ρ = q− 1
2 i l and h[ρ] = Reh +i Imh are decomposed into their real and imaginary

parts, the dynamical system is expressed

q̇ = 1
2 [l,Reh] − [q, Imh] (2.18)

l̇ = −2[q,Reh] − [l, Imh]. (2.19)
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2.5. Integrity basis Hamiltonian vector fields

Any rotational scalar function is a function of the su(3) integrity basis elements which are
a complete set of functionally independent rotational scalars. An integrity basis for su(3)
consists of the two Casimirs, the squared length of the angular momentum, and the scalars
X3 = tr(lql) andX4 = tr(lq2l)+(�l ·�l)(q ·q) [20]. In this section, the Hamiltonian vector fields
for the integrity basis functions are calculated. Using these results, the Hamiltonian vector
field associated with the rotational scalar energy function E can be determined.

The mean field Hamiltonian associated with polynomials of the elementary functions fZ
can be evaluated explicitly using two properties of the mapping E �→ (dE).: linearity and the
Leibniz rule [19]. When E = a1E1 + a2E2 is a linear combination of two functions E1 and E2,
where a1, a2 are real numbers, the mean field Hamiltonian is a linear combination of the vector
fields corresponding to E1 and E2:

(dE). = a1(dE1)
. + a2(dE2)

.. (2.20)

When E = E1 · E2 is a product of two functions, dE = E1 · dE2 + E2 · dE1, because the exterior
derivative d is a derivation. Since ω is bilinear,

(dE). = E1 · (dE2)
. + E2 · (dE1)

.. (2.21)

The squared length of the angular momentum is �l · �l = −(1/2)tr(l2) = (1/2)∑ l2ij . The
corresponding Hamiltonian vector field is

d(�l · �l). =
∑
lijdl

.

ij

= −i
∑
lij (Eij − Eji)

= −i(l − lT)
= −2il. (2.22)

The Hamiltonian vector field of the scalar quadrupole–quadrupole function q · q = tr(q2) =∑
q2
ij is calculated similarly

d(q · q). = 2q. (2.23)

The Hamiltonian vector fields of the rotational scalar functions X3 and X4 are

dX.3 = 4(q2 − 1
3 (q · q)Id) (2.24)

dX.4 = l2q + ql2 − 2
3X3 Id + 2(�l · �l)q + 2i(lq2 + q2l − (q · q)l). (2.25)

The su(3) algebra has two independent Casimirs of quadratic and cubic orders,

Cr (ρ) = tr ρ r for r = 2, 3. (2.26)

These functions on the dual space are invariant with respect to the coadjoint transformation,
Cr (Ad∗

gρ) = Cr (ρ); i.e., the Casimir functions are constant on each coadjoint orbit. The
Hamiltonian vector fields associated with the Casimir functions are null,

dC.2 = 2 ρ̄ = 0 (2.27)

dC.3 = 3 (ρ2 − 1
3 trρ2) = 0 (2.28)

because any power of ρ is a Hermitian matrix that commutes with ρ and its traceless part is
an element of the isotropy subalgebra su(3)ρ .

Recall that each Hamiltonian vector field at a point ρ is represented by a Lie algebra
element. But the representation is not unique because any element of the isotropy subalgebra
at ρ may be added to it without changing the tangent vector. For example, the Hamiltonian
vector field associated with the squared length of the angular momentum can be expressed
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equivalently as d(�l · �l). = −2il̄ − 4ρ̄ = −4q̄. Equation (2.24) was simplified by adding a
multiple of dC.3.

The Casimir functions are constant on each coadjoint orbit and their derivatives vanish
in all directions tangent to a coadjoint orbit. In particular the values of the Casimirs at the
diagonal density (1.1) are

C2(�) = 2
3 (λ

2 + λµ + µ2)

C3(�) = 1
9 (2λ

3 + 3λ2µ− 3λµ2 − 2µ3).
(2.29)

To maintain consistency within density matrix theory, the above values of the Casimir functions
should not be replaced with their quantum expectations in hopes of an improved theoretical
description [12].

3. Principal axis frame

The rotation group SO(3) is a subgroup of the special unitary group SU(3). A density
ρ = q − 1

2 i l in su(3)∗ is transformed by a rotation R ∈ SO(3) into the density Ad∗
Rρ =

RρRT = RqRT − 1
2 iRlRT. Since any real symmetric matrix can be diagonalized by a rotation

matrix, there is an R ∈ SO(3) such that the rotated quadrupole moment is diagonal,

q̃ = RqRT = diag (q1, q2, q3). (3.1)

The eigenvalues are unique, up to their order, which we fix to be q3 � q1 � q2. From a
geometrical viewpoint, R rotates the laboratory frame into the body-fixed frame in which, by
definition, the system’s quadrupole moment q̃ is diagonal. At the same time the laboratory
angular momentum l is transformed to I = R l RT, which is the system’s angular momentum
projected onto the body-fixed principal axes.

The angular momentum in the body-fixed frame is a pseudovector �I with components
Ii = 1

2 εijk Ijk . The rotation of the vector angular momentum �I = R �l is equivalent to the
matrix transformation I = RlRT. When two of the three components of �I are zero, the body
is rotating around a principal axis. A tilted rotation in a principal plane requires that one
component of �I is zero. In general, all three components of the angular momentum �I are
nonzero, and the matrix I is antisymmetric, but otherwise arbitrary.

Let M� denote the surface of all principal axis densities contained in the coadjoint orbit
O�. The points ρ̃ = q̃− 1

2 i I of M� consist of a real diagonal part, q̃, and an imaginary part I .
Each point of M� is defined by a set of six real variables (q1, q2, q3; I1, I2, I3) that satisfy an
algebraic system,

q1 + q2 + q3 = 0 (3.2)∑
k

q2
k + 1

2I
2 = C2(�) (3.3)

∑
k

q3
k − 3

4

∑
k

qkI
2
k = C3(�). (3.4)

The principal axis surface M� is three dimensional in the typical case when λ and µ are
nonzero.

The transformation from a coadjoint orbit O� to the principal axis submanifold M� is
computed efficiently by exploiting the invariance of various rotational scalars. The three
principal moments qk are solutions to the algebraic system [21],
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k

qk = 0

∑
k

q2
k = q · q (3.5)

∑
k

q3
k = tr q3 =

∑
ijk

qij qjkqki .

Taking the exterior derivative of both sides of this system, sharping the one-forms and applying
equation (2.14) results in a linear system for the Hamiltonian vector fields dq.k whose solution
is

(qk − qi)(qk − qj ) dq.k = qk q + q2 − 1
3 (q · q)Id (3.6)

for i, j, k cyclic. The rotational scalars that are quadratic in the angular momentum matrix
may be expressed in terms of the body-fixed components [22]∑

k

I 2
k = �l · �l

∑
k

qkI
2
k = X3 (3.7)

∑
k

q2
k I

2
k = X4.

Applying a strategy similar to the one yielding equations (3.6), the Hamiltonian vector fields
dI .k are calculated to be

R(dI .1 )R
T = 1

2


 0 I2

q1−q2

I3
q1−q3

I2
q1−q2

0 −2i
I3
q1−q3

2i 0




R(dI .2 )R
T = 1

2


 0 I1

q2−q1
2i

I1
q2−q1

0 I3
q2−q3

−2i I3
q2−q3

0


 (3.8)

R(dI .3 )R
T = 1

2


 0 −2i I1

q3−q1

2i 0 I2
q3−q2

I1
q3−q1

I2
q3−q2

0


.

3.1. Dynamics in the principal axis frame

The Hamiltonian dynamical system on O� reduces to a simpler dynamical system on M� when
the energy functional E is a rotational scalar. This reduction is analogous to the simplification
of classical rigid rotor theory that results from a transformation to the body-fixed system [23].
Another example is ‘cranked’ Hartree–Fock theory, in which the Slater determinants are
interpreted as nuclear states in the rotating body-fixed frame [24]. In classical mechanics and
quantum Hartree–Fock theory, dynamics in the noninertial body-fixed frame is determined by
the Routhian instead of the inertial laboratory-frame Hamiltonian. In a parallel construction,
the rotational dynamics of su(3) densities simplifies in the principal axis frame, and the su(3)
mean field Hamiltonian must be transformed into the su(3) Routhian.

Let R(t) ∈ SO(3) be the time-dependent transformation that rotates the system into the
principal axis frame. Define the time-dependent antisymmetric matrix  = ṘRT in the Lie
algebra so(3) of the rotation group. The pseudo-vector �ω corresponding to the matrix is the
angular velocity vector. Let ρ̃ = RρRT ∈ M� denote the density in the principal axis frame.
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The Hamiltonian dynamical system on the coadjoint orbit, equation (2.17), is equivalent to the
following dynamical equation on M�:

i
dρ̃

dt
= [h[ρ̃], ρ̃], (3.9)

where h[ρ̃] = Rh[ρ]RT + i is the su(3) Routhian. When the mean field Hamiltonian is a
polynomial in the density, the projection to the body-fixed frame is simply Rh[ρ]RT = h[ρ̃].
In terms of the body-fixed quadrupole moment and angular momentum, the dynamical equation
becomes

d

dt
I = [, I ] + Rl̇RT (3.10)

d

dt
q̃ = [, q̃] + Rq̇RT (3.11)

where Rl̇RT and Rq̇RT are given by equations (2.18), (2.19). These dynamical equations
on the principal axis submanifold differ from the equations on the coadjoint orbit by Coriolis
terms, namely, the commutators involving the angular velocity matrix.

When the energy E is invariant with respect to rotations, its derivative in the direction
Z ∈ so(3) vanishes, dE(Z) = 0. From equation (2.16) the mean field Hamiltonian satisfies
ωρ(h[ρ], Z) = 0 for all antisymmetric Z. According to the dynamical equation on O�,

i 〈ρ̇, Z〉 = tr([h[ρ], ρ]Z)

= tr(ρ [Z, h[ρ]])

= 0 (3.12)

for all Z ∈ so(3). The time rate of change of each angular momentum component is
l̇ij = 〈ρ̇, (Eij − Eji)〉 = 0. Hence, the angular momentum is a conserved quantity for a
rotationally invariant energy functional, l̇ = 0. On the principal axis submanifold, the time
rate of change of the body-fixed angular momentum obeys the precession equation

İ = [, I ],
d

dt
�I = −�ω × �I . (3.13)

Although the precession equation is formally identical to the Euler equation, that fact does
not imply rigid body rotation. The reason is that the moments of inertia are not constant.
Indeed the deformation depends on the angular momentum due to the mean field constraint to
a coadjoint orbit, equations (3.3), (3.4).

Since q̃ is diagonal, the off-diagonal components of the right side of equation (3.11) must
vanish,

(qi − qj )ij = (Rq̇RT)ij for i �= j. (3.14)

The body-fixed projection of the time derivative of the quadrupole moment is

Rq̇RT = 1
2 [I, R(Reh)RT] − [q̃, R(Imh)RT]. (3.15)

The solution of equation (3.14) determines the angular velocity as a function of the angular
momentum I and the body-fixed deformation q̃. The vibration of the quadrupole deformation
in the principal axis frame is determined by

d

dt
qk = (Rq̇RT)kk = 1

2
[I, R(Reh)RT]kk. (3.16)
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4. Rotating equilibrium solutions

A rotating body is in equilibrium when the principal axis lengths and body-fixed angular
momentum components are constant in time. From equation (3.13) the angular momentum
must commute with the angular velocity, [I,], or, equivalently, the vector angular momentum
�I is parallel to the angular velocity �ω. Unless the angular momentum or angular velocity vanish,
they must be proportional,  = AI for some real constant A. The moment of inertia is the
reciprocal of A.

As an example, consider the simple energy functional

E[ρ] = A1I
2
1 + A2I

2
2 + A3I

2
3 , (4.1)

where A1, A2, A3 are real constants. Its Hamiltonian vector field is

h[ρ] = 2A1I1(dI1)
. + 2A2I2(dI2)

. + 2A3I3(dI3)
.. (4.2)

The body-fixed projection h[ρ̃] is determined by using equation (3.8). A rotating equilibrium
solution ρ̃ self-consistently satisfies [h[ρ̃], ρ̃] = 0, where the cranking mean field
Hamiltonian is h[ρ̃] = h[ρ̃] + iAI . The equilibrium density ρ̃ is a point of the submanifold
M� and must also satisfy equations (3.2)–(3.4).

An important particular solution corresponds to rotation about a principal axis. Suppose
I = I1 is the total angular momentum so that I2 = I3 = 0. The commutator of the cranking
Hamiltonian and the body-fixed density simplifies to

[h[ρ̃], ρ̃] = i (A− 2A1)I1(q2 − q3)

( 0 0 0
0 0 1
0 1 0

)
. (4.3)

Excluding spheroidal densities, equation (4.3) is satisfied whenA = 2A1, orA1 is the reciprocal
of twice the moment of inertia. The components of the quadrupole moment in the principal
axis frame are solutions to equations (3.2)–(3.4) constraining the points to M� and are given
analytically as follows:

For rotation about the principal 1-axis, there are three bands of equilibrium solutions that
describe rotation about the short, long and medium axis lengths,

q1 = −λ + 2µ

3
0 � I � Imax = λ short (4.4)

q1 = +
2λ + µ

3
0 � I � Imax = µ long (4.5)

q1 = −λ− µ
3

0 � I � Imax = λ + µ middle (4.6)

where the axis lengths perpendicular to the rotation axis are

q2,3 = −q1

2
± 1

2

√
I 2

max − I 2. (4.7)

These solutions were derived recently as critical points of the su(3) energy functional on
a coadjoint orbit subject to the additional constraint that the total angular momentum is
I [12]. The principal axis rotors are solutions for other su(3) energy functionals, for example
E[ρ] = AI 2 + BX3 + CX4 [12]. They are also familiar from the theory of the cranked
anisotropic oscillator [25]. There are many other rotating equilibrium solutions, including
tilted triaxial rotors [12].

The equilibrium conditions considered in this paper and its companion paper are
mathematically equivalent. Suppose ρ̃ is a critical point of the su(3) energy functional
E on the surface M� subject to the constraint that the total angular momentum is I .
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According to the Lagrange multiplier theorem, ρ̃ is a critical point of the functional EI =
E − (A/2)(I 2

1 + I 2
2 + I 2

3 − I 2) on M� for some real multiplier A. The Hamiltonian vector field
at ρ̃ associated with the function EI is R(dE.I )RT = h[ρ̃] + iAI . Since ρ̃ is a critical point
of EI on M�, the Hamiltonian vector field vanishes, [h[ρ̃] + iAI, ρ̃] = 0. This condition is
identical to equation (3.9) when  = AI .

The critical points of the constrained energy functional were investigated thoroughly in
prior work [12] and need not be repeated here using the self-consistent mean field Hamiltonian
method.

5. Conclusion

This paper uses the symplectic geometry of coadjoint orbits to derive the su(3) mean field
Hamiltonian. Viewed geometrically, the mean field Hamiltonian is a vector field tangent to
each coadjoint orbit. An equilibrium su(3) density is a zero of the mean field Hamiltonian
vector field.

The mean field Hamiltonian determines time-dependent su(3) density dynamics as well
as equilibrium configurations. The time evolution equation for the density is a Hamiltonian
dynamical system on each coadjoint orbit surface. One of the applications of su(3)mean field
dynamics is to the description of normal mode vibrations in the small-amplitude limit [26].
Large-amplitude motion, which can be chaotic, may be investigated using the full equations
of motion. These applications are the analogues of the random phase approximation and
time-dependent Hartree–Fock from conventional mean field theory.

Note that the su(3) mean field formulation allows for the use of the principal axis frame
while in representation theory the body-fixed system is ill defined. As a consequence, the ‘K’
quantum number, which is a component of the angular momentum along a principal axis, is
defined only approximately in su(3) representation theory via angular momentum projection
from a highest-weight vector followed by Gram–Schmidt orthogonalization [27]. The physical
interpretation of su(3) rotational bands is optimal in mean field theory because the angular
momentum projections onto the principal axes are well defined. The rotational dynamics of
su(3) densities reduces to an Euler equation in the principal axis frame, equation (3.13). The
full dynamics of su(3) mean field theory obeys a Lax equation (3.9).

The energy in group theoretical models of nuclear structure is approximated usually by a
rotationally invariant polynomial of the algebra generators. The polynomial’s coefficients are
chosen to attain a good fit to experimental energy levels and transition rates. In su(3) mean
field theory, the generalized Hohenberg–Kohn theorem [11] shows that there exists an energy
functional whose minimum is the exact su(3) ground state density, but the theorem does not
provide a method for the functional’s explicit construction. This theorem indicates that the
su(3) density method has the potential to be an exact theory, but it does not give a final answer.
The energy functional E used in this paper is the rotor energy, equation (4.1), and its three real
coefficients can be fitted to the energy levels and deformations of rotational bands of deformed
nuclei. Another natural choice with similar properties is a low-degree polynomial in the su(3)
integrity basis [20]. This procedure parallels the application of the original Hohenberg–Kohn
theorem in density functional theory [10]. The theorem proves only the existence of an exact
energy functional which can replace the simple model functional of Thomas–Fermi theory in
atomic physics. The construction of the exact energy functional continues to stimulate the
efforts of many researchers in quantum chemistry.

Mean field theory applies to any dynamical symmetry algebra. The model densities are one
coadjoint orbit of the dynamical symmetry group in the algebra’s dual space. The symplectic
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structure on the coadjoint orbit determines the mean field Hamiltonian from a model energy
functional. The time development of the density is a Hamiltonian dynamical system on the
coadjoint orbit.
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